Triangulations and Edge Flips, Part 2

Math 282 Computational Geometry
4. In your algorithm for $\# 3$, what is the largest number of edge flips that might be required? (Your answer should depend on n).
5. What is the largest number of edge flips that might be required to transform some triangulation of S into the triangulation produced by the incremental algorithm? What does this imply about the diameter of the flip graph of S ? (The diameter of the flip graph is the length of the longest path between any two nodes in the graph.)
6. Let S be the 3×3 lattice, shown below. Find triangulations T_{1} and T_{2} of S such that the number of edge flips required to transform T_{1} into T_{2} is as large as possible. (This gives the diameter of the flip graph of S).
-
\bullet
-

