Art Gallery Theorems

Math 282 Computational Geometry
Complete the proof of the following theorem.
Theorem: To cover a polygon with n vertices, $\lfloor n / 3\rfloor$ guards are necessary for some polygons and sufficient for all of them.
Proof that $\lfloor n / 3\rfloor$ guards are necessary:
Describe a family of polygons that shows this.

Proof that $\lfloor n / 3\rfloor$ guards are sufficient:

Let P be a polygon with n vertices. We know that P can be triangulated.
Show that each vertex of P can be assigned one of three colors so that any pair of vertices connected by an edge of P or a diagonal of the triangulation have different colors.

To complete the proof, explain how the least-used vertex color gives a placement of at most $\lfloor n / 3\rfloor$ guards that cover the polygon.

Choose one of the following problems to think about with your group.
Orthogonal polygons: How could you show that $\lfloor n / 4\rfloor$ guards are necessary for some and sufficient for all orthogonal polygons?

Algorithms: How could you program a computer to find a placement of at most $\lfloor n / 3\rfloor$ guards that cover a given polygon? Suppose that the polygon is specified by a list of (x, y) coordinates of its vertices, in order around the polygon.

