Polygon Triangulation Theorem

Math 282 Computational Geometry

Complete the proof of the following theorem.
Theorem: Every triangulation of a polygon P with n vertices has $n-2$ triangles and $n-3$ diagonals.

Proof (by induction):
First state the base case. Explain why it is true.

Inductive hypothesis: Let $n>3$ be an integer, and assume the statement is true for all polygons with fewer than n vertices.
Now explain how the statement follows for a polygon with n vertices.

Edge Contraction Example

Math 282 Computational Geometry
Let P_{n} be a convex polygon with vertices labeled 1 to n counterclockwise. Let \mathcal{T}_{n} be the set of all triangulations of P_{n}, and let t_{n} be the number of elements of \mathcal{T}_{n}.
Define the map $\phi: \mathcal{T}_{6} \rightarrow \mathcal{T}_{5}$ that contracts the edge $\{1,6\}$ to the point 1 . To illustrate this map, first draw all triangulations in \mathcal{T}_{6} and \mathcal{T}_{5}. Then draw an arrow from each $T \in \mathcal{T}_{6}$ to $\phi(T)$.

Use your illustration to explain why

$$
t_{6}=\sum_{T \in \mathcal{T}_{5}} \text { degree of vertex } 1 \text { in } T .
$$

Then sum over all vertices of T to explain why

$$
5 \cdot t_{6}=2(2 \cdot 4-1) \cdot t_{5}
$$

Now generalize. What equation relates t_{n+2} and t_{n+1} ?

